Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-12, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414257

RESUMEN

Quorum sensing enables cell-cell communication in bacteria and regulates biofilm formation. Biofilm production promotes pathogenicity of Escherichia coli and causes infections. However, antibiotic resistance limits conventional treatment efficacy against biofilm infections. Quorum quenching offers an alternative by disrupting quorum sensing signals. Allicin, extracted from garlic, possesses antimicrobial and anti-quorum sensing properties. This study employed molecular docking and dynamics simulations to investigate allicin's interaction with the E. coli quorum sensing system, specifically targeting the cytoplasmic SidA receptor protein. SidA binds to N-acyl-homoserine lactone ligands and regulates quorum sensing in E. coli. The crystal structure of SidA was obtained from the PDB. Molecular docking revealed that allicin competitively binds to the ligand-binding pocket of SidA. Simulations analyzed the effects of allicin binding on SidA stability and affinity for N-acyl-homoserine lactones over 200 ns. Parameters like RMSD, RMSF, and hydrogen bonding indicated SidA was more stable when bound to allicin compared to unbound. Binding free energies suggested allicin reduced SidA's affinity for native ligands. Therefore, allicin binding to SidA alters its conformation and inhibits interaction with N-acyl-homoserine lactones, disrupting quorum sensing signaling and biofilm production in E. coli.Communicated by Ramaswamy H. Sarma.

2.
Iran J Microbiol ; 15(5): 625-630, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37941879

RESUMEN

Background and Objectives: An increase in the antibiotic resistance of Shigella isolates has caused major global challenges in antimicrobial therapy. Knowledge of local antibiotic resistance trends is essential for selecting appropriate antibiotic treatment regimens. This study aimed to evaluate the frequency of efflux-mediated tetracycline resistance (tet) and plasmid-mediated quinolone resistance (qnr) genes among Shigella isolates. Materials and Methods: This survey investigated 91 Shigella isolates, obtained from children with acute diarrhea. The isolates were identified using standard biochemical tests and confirmed by polymerase chain reaction (PCR) assay. Besides, the susceptibility of isolates to six selected antibiotics was assessed by the disk diffusion method. All tetracycline-resistant and nalidixic acid and ciprofloxacin resistant strains were screened for tet and qnr genes by a multiplex PCR assay. Results: According to the results of antibiotic susceptibility tests, the highest level of antibiotic resistance was related to tetracycline (80.2%) and doxycycline (78.1%), respectively. All isolates were sensitive to tigecycline. The PCR results showed that 40.6%, 3.1%, 21.8%, 61.6% and 28.7% of the isolates carried qnrA, qnrB, qnrS, tetA, and tetB genes, respectively. None of the isolates contained tetC and tetD genes. Conclusion: The current findings revealed that tetA and qnrA genes might play a key role in conferring tetracycline and quinolone resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...